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In this paper, a new wave re#ector called random wave re#ector (RWR) is introduced for
the control of transverse vibration and wave propagation in an in"nite, multi-span,
simple-support beam. In order to illustrate the theory, RWR is "rst tested in a simple
con"guration of controlling plane wave propagation through layers of gas media. Results
demonstrate that RWR has great advantages over other types of noise abatement methods.
RWR is then applied to control the vibration of the multi-span beam in which the support
locations are given in a random manner. Two types of external excitations, an incident
vibration wave and an external point force, are considered separately. Transmission loss,
localization factor, mode shape and input power #ow are used to investigate the e!ectiveness
of RWR. The results show that no vibrational power #ow can be tapped into or propagate
through a random system at any frequency. The passbands, which always exist in traditional
systems, are eliminated in a random system for which much better performance is obtained
over a broad frequency range.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Multi-span, simple-support beams are widely used in engineering, and many practical
structures can be modelled as such beams. In order to make sure that the structure has
a minimal probability of catastrophic failure or malfunction in service, the associated
vibration levels and shock response must be predicted and controlled. The problem of
vibration control and wave propagation is very important and has been investigated for
many decades.
When a simple-support, multi-span beam has uniform physical properties and the spans

are of equal length, it is regarded as being uniform or periodic. Each span is an identical
subsystem and these spans are coupled together through the rotation at each support. The
vibroacoustic response of periodic structures has received much attention in the past and
many characteristic properties have been revealed [1}9]. It has been pointed out that the
periodic structures can be regarded as structural "lters with certain characteristics.
Passbands and stopbands of frequency always exist. In a stopband, the propagation
wavenumber is complex, energy is attenuated along the path; while in the passband, the
propagation wavenumber is purely real and the energy is transmitted freely.
All structures in reality are imperfect due to various reasons. A small imperfection, or

disorder, can cause the predictions to be qualitatively incorrect (see below). Disorders may
also alter the passband and stopband. The periodic systems with a certain degree of
disorder have attracted much attention. When only one of its elements di!ers from the rest,
0022-460X/02/090591#18 $35.00/0 � 2002 Elsevier Science Ltd.
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a system is said to contain a single disorder or defect. Bansal [10] studied the e!ect of such
a single disorder in the support location of an in"nite and otherwise periodic beam. The
disorder was found to cause resonance in the frequency band where vibration is normally
attenuated for the periodic structures. Investigations on multiple disorders in an otherwise
periodic system have been concentrated on the so-called &&periodic disorders''. Lee [11]
carried out an analysis of the normal mode of linear lattices with periodic impurities, but
his method is not suitable for studying the response of engineering structures in general.
Bansal [12, 13] analyzed the free-wave propagation through mono-coupled systems
with periodic disorders, and considered the response of a periodic beam system having four
disordered spans to a convected harmonic pressure "eld. Bansal [14] went on to investigate
the free-wave propagation through a combination of two di!erent semi-in"nite,
mono-coupled, periodic systems joined together without or through a "nite periodic/
disordered system.
Random disorders also occur in reality, such as wave scattering in random media

[15}18]. When the ideal periodicity is randomly perturbed, the ability of a periodic
structure of transmit disturbances inde"nitely within the original passbands is reduced. This
is known as the localization e!ect, which was "rst predicted by Anderson [19] when he
considered the transport of electrons in a disordered, three-dimensional, periodic system. In
a disordered, periodic structure, the localization factor was introduced by Hodges and
Woodhouse [20] and has often been used to quantify the vibration localization. This factor
is de"ned as the average exponential decay rate of the vibration amplitude and measured
from one substructure to the next. Cai and Lin [21] developed a new perturbation scheme
on the basis of probability theory to calculate the localization factor. Kissel [22] derived the
localization factor as a function of the transmission matrix for multi-channel disordered
systems using a multiplicative ergodic theorem of Oseledets.
Pierre et al. [23] investigated the localization of the free modes of vibration of disordered,

multi-span beams by both theoretical and experimental methods. Bouzit and Pierre [24]
studied the e!ects of small randomness in support spacing on the dynamics of multi-span
beams of rigid supports. The results showed that the key parameter governing the
sensitivity to disorder was the dynamic inter-span coupling. Bouzit and Pierre [25]
experimented on the vibration localization in two types of multi-span beams; good
agreement was obtained between experimental results and theoretical "ndings for both
perfect and imperfect systems. Ottarsson and Pierre [26] investigated the vibration and
wave localization in a nearly periodic string with attached beads. The e!ect of random
disorder of both the bead spacing and the bead mass was studied and was shown to have
fundamental di!erences. Bouzit and Pierre [27] investigated the linear dynamics of nearly
periodic, disordered, multi-span beams resting on #exible supports. They showed that the
energy conversion phenomenon rendered the mechanism of localization much more
complex than in mono-coupled periodic systems. Pierre [28] also reviewed the recent
developments in the area of localization in linear structural dynamics problems with
particular emphasis on multi-coupled, nearly periodic structures.
To summarize, it is pointed out that passbands always exist in a periodic or nearly perfect

structure. However, the location of the passbands can be altered by disorders in the periodic
structure. Sometimes, the e!ect is incidentally bene"cial to the control of energy #ow
through the structure over particular frequency ranges. The purpose of the present study is
to explore whether such bene"cial e!ect can be extended over a broad frequency range so
that passbands can be eliminated altogether. The disorders studied here will be deliberately
arranged instead of being small imperfections existing in otherwise periodic or uniform
systems. A similar attempt was made by Huang [29] in the context of converting mean #ow
energy to wave energy in a supersonic #ow duct.
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In what follows, we "rst consider a simple type of random wave re#ector (RWR) for the
control of plane-wave sound through layers of acoustic media. RWR consists of di!erent
wave-carrying media sandwiched in a random sequence of thickness. Since re#ected waves
originating from di!erent interfaces are not correlated with each other, the total energy of
all the re#ected waves is found to grow with the number of sandwich layers. After
con"rming our physical intuition with such simple con"guration, we go on to apply RWR
to control the vibration and wave propagation in an in"nite, multi-span, simple-support
beam. Two types of external excitations, an incident vibration wave and an external point
force, are considered. The results show that the randomness can eliminate passbands
completely. In other words, no vibration power #ow can be fed into or propagate through
a random system at any frequency.

2. RANDOM WAVE REFLECTOR FOR PLANE SOUND WAVES

The basic principle of RWR is "rst tested in a simple con"guration of noise propagation
through and re#ection by layers of di!erent gas media. As shown in Figure 1, there are three
regions. The left region (a) and the right region (c) have the same basic acoustic mediumwith
acoustical impedance Z

�
"�

�
c
�
where �

�
, c

�
are the density and the speed of sound of the

medium respectively. The two regions are separated by the multi-layer region (b) where the
acoustic impedance alternates between the basic medium denoted by the subscript &&0'', and
another medium denoted by subscript &&1'' with impedance Z

�
"�

�
c
�
. If the distribution of

the layer thickness in region (b) is uniform, we call it a &&uniform wave re#ector''; if the
distribution follows a pattern or periodic variation, we called it a &&periodic wave re#ector''.
Note that the uniform wave re#ector is a special type of periodic structure. If the layer
thickness is given in a random manner, it is called a &&random wave re#ector'' or RWR.
A plane incident wave from the far left, or region (a), is re#ected partially at the "rst

impedance discontinuity, and the rest is transmitted and then re#ected by all subsequent
discontinuities. The re#ected waves are also re#ected back by impedance discontinuities as
they travel to the left, forming complicated patterns of standing waves within region (b). It is
not immediately clear whether the energy #uxes of all re#ected waves will add up layer by
layer, leading to a vanishing amplitude of the "nal transmitted wave. To test this physical
intuition, the dependence of the transmission loss on the distribution of the layer thickness
is now investigated.

2.1. METHOD OF SOLUTION

The plane incident wave is given as I
�
ei (�t!k

�
x), where � is the angular frequency and the

common factor ei�twill be omitted wherever appropriate for the sake of brevity, k
�
"�/c

�
is
Figure 1. The illustrative con"guration of plane sound wave propagation through layers of gas media with
alternating impedances.
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the wavenumber in the basic medium. For medium &&1'', the wavenumber is k
�
"�/c

�
. For

N layers in region (b), there will be 2N waves to be determined. Together with 2 waves in
region (a) and the "nal transmitted wave in region (c), the total number of waves is 2N#3.
The number of interfaces between layers is N#1. The boundary conditions at each
interface are the continuity of particle velocity and sound pressure, giving a set of 2N#2
equations. If the amplitude of the incident wave is known, the amplitudes of the other
2N#2 waves can be found from the linear set of 2N#2 equations.
We number the interface as j"1 at the far left to j"N#1 at the far right, and denote

the pressure to the right-travelling waves from interface j to j#1 as I
�
e!ik

�
(x!x

�
) and the

left-travelling waves from j#1 to j asR
�
eik�

(x!x
�
) . Note that the phase angles of the complex

wave amplitudes are measured relative to the left boundary of a layer, x
�
, and k

�
"�/c

�
is

the wavenumber for the layer of index j, which is equal to either k
�
or k

�
depending on j. The

boundary conditions for each interface, j, are expressed as

I
�
#R

�
"I

���
e!ik

���
l
���#R

���
e#ik

���
l
��� ,

(I
�
!R

�
)/Z

�
"(I

���
e!ik

���
l
���!R

���
e#ik

���
l
���)/Z

���
,

where j"2, 3,2, N#1, and l
���

"x
�
!x

���
is the thickness of layer j!1. Note that the

notations for the "rst interface have to di!er from the rest since the phase angle of the
incident wave has to be measured relative to the right-hand-side boundary, namely interface
j"1. This is equivalent to setting l

�
"0 for j"1:

I
�
#R

�
"I

�
#R

�
, (I

�
!R

�
)"� (I

�
!R

�
),

where

�"Z
�
/Z

�
"(�

�
c
�
) /(�

�
c
�
)

is introduced as the impedance ratio. It seems that the linear set of 2N#2 equations
featuring a matrix of four diagonals will have to be solved simultaneously.
However, it is noted that the situation for the last interface, j"N#1, is di!erent.

Denoting the "nal transmitted wave as I
���

e!ik
�
(x!x

���
), we obtain

����
I
�
e!ik

�
l
�#R

�
eik�l�"I

���
#R

���
, I

�
e!ik

�
l
�!R

�
eik�l�"�I

���
!�R

���
.

���
�

Since there is no re#ection waves from the far right region (c), R
���

"0, these two
equations can be solved independently if we specify I

���
"1 instead of the incident wave at

the far left, I
�
"1. That way, the equations can be solved in a backward order from interface

j"N#1 to 1, and the costly inversion of a large matrix is avoided. Once the wave
amplitudes are found, the transmission loss TL de"ned as 20 log

��
� I

�
/I

���
� can be

calculated.

2.2. RESULTS AND DISCUSSIONS

We present here a typical example in which the impedance ratio is �"0)73, the number
of layer is N"801, and the average thickness is M̧ "0)1 m. Three types of thickness
distributions are considered. The "rst is the uniform type in which all layers have the same
thickness of 0)1 m, the second is the periodic type in which the layer thickness repeats the
pattern of &&0)1, 0)05, 0)1, 0)15'', the third type is one in which the thickness is randomly



Figure 2. Transmission loss spectra for three types of wave re#ections: (a) uniform; (b) periodic, and (c) random.
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selected from 0)05 to 0)15 with a uniform probability distribution. The transmission loss
(¹¸) is plotted against the normalized frequency de"ned as

�" M̧ f/c
�
,

where f is the dimensional frequency and c
�
is the speed of sound in the basic medium in

regions (a) and (c).
As shown in Figure 2(a), the uniform wave re#ector exhibits narrow stopbands around

the frequencies of �"0)24, 0)72, and to a lesser extent around �"0)47, 0)97. Similar
performance is shown in Figure 2(b) for the periodic type, where isolated stopbands are
found around �"0)11, 0)24, 0)37, 0)60, 0)72, 0)85, 0)97. The performance of the random
wave re#ector (RWR) is shown in Figure 2(c). It can be seen that ¹¸ has a random pattern
with an average level of about 80 dB. The passbands are eliminated, although the
transmission loss under the normalized frequency of 0)2 is not as good. What happens is
that the length of the segments is too short to be e!ective as an individual re#ector, and the
interfaces can hardly re#ect any incident wave. In fact, in the low-frequency band, the
random wave re#ector can be treated as a composite medium with an equivalent property
between the two acoustical media. As a result, the discontinuity is less sudden.

3. THEORY FOR RWR IN MULTI-SPAN BEAMS

We consider an in"nite, elastic beam on simple supports as shown in Figure 3. The
number of supports is "nite, but the uniform beam extends to in"nity in both far left and far
right regions. Admittedly, all beams in engineering applications are "nite in length. The



Figure 3. The geometry of in"nite, elastic beam with a "nite number of simple supports.
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adoption of the in"nite beam model is justi"ed as follows by considering a problem of
vibrational wave incident from the far left. When the random wave re#ector works, we
except a high transmission loss. The "nal transmitted wave is very weak. As a result,
additional re#ection by the right end of a "nite beam in reality will have little e!ect on the
result. As far as the far left region is concerned, the wave pattern is already one of standing
waves. It makes no di!erence to the result of ¹¸ whether the incident wave is from in"nity
or partly from the end re#ection from the left. As will be shown below, high ¹¸ is obtained
when the number of the random supports is reasonably high, hence justifying the model of
in"nite beam.
We consider only the bending motion and neglect shear deformation. If all the spans have

identical length, the multi-span beam is regarded as a uniform system; if the locations of
these supports are given in a random fashion, the system is called a random wave re#ector.
The theory is developed below by "rst considering the general form of solution and
boundary conditions.

3.1. GENERAL BEAM VIBRATIONS AND BOUNDARY CONDITIONS

The free #exural vibration is described by

EI
��w

�x�
#m

��w

�t�
"0,

where w (x, t) represents the displacement of the beam, E is the elastic modulus of the
materials, I is the cross-sectional second moment of area per unit width, and m is the mass
per unit length of the beam. The general solution can be written in the form of travelling
waves,

w (x, t)"ei�t
�
�
���

A
�
e���� ,

where the four wavenumbers are written in the format of a real constant k
�
determined by

the beam property and the driving frequency,

k
�
"!k

�
, k

�
"ik

�
, k

�
"k

�
, k

�
"!ik

�
, k

�
"(m��/EI)���.

k
�
and k

�
are for forward waves, k

�
and k

�
backward waves. k

�
and k

�
represent

propagating waves; k
�
and k

�
represent near"eld vibration waves.

The boundary conditions at a simple support of index j are (1) no displacement on the
left-hand side denoted by (x

�
)
�
, (2) no displacement on the right-hand side (x

�
)
�
, (3)

continuity of slope w
�
, and (4) zero bending moment M at the simple support. The four

boundary conditions are expressed as

w (x
�
)
�

"w (x
�
)
�

"0, w
�
(x

�
)
�

"w
�
(x

�
)
�
, M(x

�
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#M(x
�
)
�

"0,



RANDOM WAVE REFLECTOR 597
which involve four waves in the left span j!1, from x
���

to x
�
, and four waves in the right

span of j de"ned as x3 (x
�
, x

���
) with length ¸

�
"x

���
!x

�
. Denoting the amplitudes of the

waves travelling in the jth span by A
�	�
where the second subscript s"1, 2, 3, 4 speci"es one

of the four possible waves, andmeasuring the phase angle relative to the left-hand-side point
x
�
, one has waves on the jth span expressed as A

�	�
eik� (x!x

�
). The boundary conditions at the

jth interface become

�
�
���

A
���	�

eik�¸���"0,

�
�
���

A
�	�

"0,

�
�
���

k
�
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���	�
eik�¸���"
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���

k
�
A

�	�
,

�
�
���

k�
�
A

���	 �
eik�¸���#

�
�
���

k�
�
A

�	 �
"0.

Note that for the "rst support, j"1, the phase angle of the far-left waves is measured
relative to x

�
and the appearance of the boundary conditions will be slightly di!erent (see

below).
For anN-span beam, there are 4(N#2) waves to begin with. The extra two accounts for

the far left and the far right regions are semi-in"nite. There are a total of N#1 supports
which give 4(N#1) equations from four boundary conditions at each support. That means
we must know the amplitudes of four waves before we can solve the linear set of 4(N#1)
equations.Two of the four known waves derived from the fact that, in the far right region,
there is no left-travelling waves,A

���	���
"A

���	 ���
"0. The other two known waves are

found at the far left region, the details of which depend on the excitation method speci"ed.

3.2. EXCITATION BY AN INCIDENT WAVE

If the external excitation is assumed to be a forward propagating vibration wave
I
�
ei�t#ik

���
x , as shown in Figure 4, the known waves in the far left region is

A
�	���

"I
�
, A

�	���
"0.

It seems that the linear set of 4(N#1) equations featuring a matrix with eight diagonals will
have to be solved. Again, an easier way of "nding the solution is by utilizing the special
situations at the far left and the far right regions. At both j"1 and N#1, there are four
equations with six unknown wave amplitudes. The methodology described in Section 2 is
extended here. Instead of trying to "nd the transmitted wave for a given amplitude of the
incident wave, we ask the question of how much incident wave there is in order to produce
a transmitted wave of unit amplitude. In the present case of beam vibration, there are now
Figure 4. Multi-span beam responding to an incident #exural wave from the far left.



Figure 5. Multi-span beam driven by a point force.
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two transmitted waves with amplitudesA
���	 ���

, A
���	 ���

. The problem is solved in three
steps:
Step 1. We solve for the two incident waves which will produce A

���	���
"1,

A
���	 ���

"0. Once the two transmitted waves are speci"ed, the boundary conditions at
x
���

give four equations to be solved for four unknowns, which eventually leads to the
solutions for the far left region with four wave amplitudes.
Step 2. We solve for the two incident waves which will produce the alternate transmitted

wave pattern of A
���	���

"0, A
���	���

"1.
Step 3. We search for the coe$cients of linear combination of the two solutions which

should produce the actual given incident waves of A
�	���

"I
�
, A

�	���
"0.

This is a problem of solving for a set of two linear equations with two unknowns. The
results then give the actual transmitted waves for a given incident wave.

3.3. EXCITATION BY A POINT FORCE

As shown in Figure 5, the external excitation is assumed to be a point force F"F
�
ei�t

applied at a point of x
�
within a certain span. The excitation point is, in fact, a special

&&support'' point which divides the span in question into two. The boundary conditions for
the excitation point di!er from those of simple supports. Here, we have the continuity of
displacement and slope, zero bending moment, and the speci"ed shear force,

F"EI
��w

�x� �x"x
��

#EI
��w

�x� �x"x
��

.

The solution procedure for this problem is similar to that of an incident wave described
above. The di!erence lies in step 3. Now the target incident waves in the far-left region are
A

�	���
"0, A

�	���
"0. The question of the response of the beam to a unit force excitation

is solved by "nding the force required to produce the &&unit'' output waves as a result of the
combination of the two previous steps.

4. RESULTS AND DISCUSSION

We "rst present the results of a basic example, followed by the parametric studies. In the
basic example, we use steel as the beam material, so that the elastic modulus
E"2�10�� N/m� and the density �"7800 kg/m�. The cross-section is circular with
a radius of 1 cm. Three types of simple supports are considered similar to the ones used in
Section 2. The average distance between adjacent supports is 10 cm for all types, and the
total number of supports is either N"100 or 200. The uniform type has N supports
distributed by an equal distance. The periodic type has the span length alternating between
8 and 12 cm. The random type has the probability of the separation distance uniformly
distributed in the range from 2 to 18 cm. The non-dimensional frequency in this case is
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de"ned as �" M̧ (m��/EI)���. The transmission loss (¹¸), the localization factor, the mode
shape, and the input power #ow are analyzed. In addition, the e!ects of the following
parameters will be investigated in the parametric studies: the number of supports, the
average distance between adjacent supports, and the range of randomness in a random
wave re#ector.

4.1. TRANSMISSION LOSS AND LOCALIZATION FACTOR

The transmission loss here is de"ned as

¹¸"20 log
��

�A
�	 ���

/A
���	���

�.

The results of ¹¸ are plotted against the normalized frequency � in Figure 6. For the
uniform and periodic types shown in Figures 6(a) and 6(b), stopbands exist here and there,
which contrasts with the broadband performance shown in Figure 6(c) for the random type.
The existence of passbands is the inherent property of all periodic and uniform systems
which cannot be eliminated easily. The overall reduction of the vibrational energy #ow by
the random wave re#ector is much higher than that by the other types. Similar to the
mechanism discussed in Section 2, the better performance of RWR can be attributed to the
fact that waves re#ected by di!erent supports are not correlated with each other regardless
of the driving frequency.
At low frequencies, however, there is a sharp contrast between the performance of RWR

used in the multi-span beam and that used in the plane-wave propagation through gas
media (see Figure 2). In the latter case, re#ection does not happen since the layer thickness is
Figure 6. The spectra of transmission loss for (a) uniform; (b) periodic; (c) random wave re#ectors withN"100
(**) and N"200 ()))))))))).



Figure 7. The spectra of localization factor (�) for the three wave re#ections with N"1003: (a) uniform;
(b) periodic, and (c) random.
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short compared with the wavelength which is very long at low frequencies. Here, for the
multi-span beam, the performance of RWR is rather good at low frequencies. The reason is
that the beam is a dispersive wave-carrying medium in which the local phase speed
c"�k��

�
"���� (EI/m)��� varies with the driving frequency �. The group velocity of the

vibration waves, c
	
"d�/dk

�
"2 (EI/m)��� ����"2c, at which energy #ow propagates, is

twice as much as the local phase speed. Waves slow down to zero speed towards the DC
frequency. In other words, vibrational energy simply cannot propagate at low frequencies,
let alone being transmitted through the supports.
The e!ect of the number of supports is shown in Figure 6. The shape of the ¹¸ curves for

di!erentN is almost the same. AsN increases from 100 to 200, the value of ¹¸ doubles. For
large N, the amplitude of the transmitted waves decay exponentially, and the rate of
logarithmic decay per support is de"ned as the localization factor,

�" lim
�



1

N#1
ln �

A
�	���

A
���	 ���

� .
The results are plotted in Figure 7, which mirrors those of Figure 6.

4.2. MODE SHAPE AND INPUT POWER FLOW

Due to the re#ection by the discontinuities, the energy carried by the transmitted waves is
reduced along the wave re#ector, and the amplitude of the vibration also decreases. Thus,
the e!ectiveness of the wave re#ectors can also be illustrated in terms of the mode shape.
When the vibration wave w"I

�
e i(�t!k

�
x) is incident on the wave re#ector from the far left



RANDOM WAVE REFLECTOR 601
region of the beam, the resulting mode shapes are given in Figure 8 for normalized
frequencies of �"0)95, 2)1, 4)4. The abscissa now denotes the index of the beam supportN,
which is somewhat distorted axial co-ordinate of the beam. We observe that the wave
amplitudes do not decrease with N for uniform and periodic systems at the passband
frequencies, while that in the random system, maintains a robust trend to decrease for all
frequencies.
The concept of the input power #ow can be used to analyze the forced vibration by an

external force. As the beam is driven by the external point force, vibrational power is
expected to be fed into the system from the point of action and is transmitted along the
beam in both directions. This power input can be compared with the reference case of
in"nite beam without any support, in which case there is always vibrational power in#ux at
all frequencies. The normalized power input, P�, is de"ned as follows:

P"

1

¹ �
�
F< dt"

1

2
Re [F(!i�)w*

�
], P�"P/P

�
,

Figure 8. Themode shapes of multi-span, simple-support beams: (a}c) uniform,�"0)95, 2)1, 4)4; (d}f ) periodic,
�"0)95, 2)1, 4)4; (g}i) random, �"0)95, 2)1, 4)4.

�



Figure 8. (Continued)
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where the asterisk denotes the conjugate of complex numbers, and P
�
is the power #ow in

the reference case. In the stopband, the value of the power #ow is expected to be low, in
other words, no power can be tapped into the system, such as when an in"nite beam is
supported randomly. The power #ow spectra for the three types of wave re#ections with
N"199 are shown in Figure 9, which are consistent with the conclusions reached earlier
using other criteria of evaluation. It is interesting to note that, at some frequencies, P�'1
for uniform and periodic systems, namely the power input into such beams is higher than
that into a in"nite beam without any support. This is seen as a form of resonance caused by
the supports within the passbands. In contrast, no power #ow can be fed into a beam with
random supports.



Figure 9. The normalized input power #ow for multi-span beams of (a) uniform; (b) periodic; and (c) random
distribution of span distances.
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4.3. PARAMETRIC STUDIES

The e!ect of the following design parameters are studied: the range of random
distribution of the span distances (�l), the number of supports (N), and the average
separation distance between adjacent supports ( M̧ ).
In the example given earlier, the span lengths varies from 2 to 18 cm with a range of

�l"12 cm, which is di$cult to implement in practice. The results for smaller�l are given in
Figure 10 for the three types of support systems in terms of normalized power #ow P�. The
total number of supports is N"199 and the mean distance is M̧ "10 cm for all systems.
The ranges considered are �l"1, 2, 3, 4, 5, 6 cm.We observe that (a) the extent to which the
passbands are eliminated in a random system increases with �l, and (b) the passbands are
eliminated more easily at higher frequencies by the increase of �l. Conclusion (b) is
consistent with the results given in reference [25], and can be appreciated by considering the
ratio of �l to the wavelength. At high frequencies, this ratio is high even for small values of
�l, hence better performance.
The e!ect of the number of supports,N, is given in Figure 11 in terms of the transmission

loss for an incident wave from the far left for the span ranging from 5 to 15 cm. N is varied
from 25, 50, 100, 150, 200 to 250. The overall value of ¹¸ increases withN linearly. In other
words, the localization factor is almost constant. Notice, however, that the value of ¹¸

oscillates dramatically with frequency when N is very low (25 for instance), which is
a re#ection of small statistical basis.
The e!ect of the average span distance, M̧ , on the transmission loss is given in Figure 12

for RWRwithN "xed at 100. The ratio of the lower and higher limits to the average is "xed
at 0)5 and 1)5, respectively, while the average distance varies from M̧ "10, to 15, 20, 25, 30,



Figure 10. The normalized input power #ow for a random beam of various ranges of span distance:
(a) �l"6 cm; (b) �l"5 cm; (c) �l"4 cm; (d) �l"3 cm; (e) �l"2 cm; (f ) �l"1 cm.
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to 35 cm. Several observations are made. First, the level of the sharp stopband near the DC
frequency and the level of ¹¸ at other frequencies (with ¹¸ approximately 300 dB) do not
change with M̧ . Second, the spectral oscillation reduces with �̧ . Third, the high-peak
stopband near the DC frequency narrows as M̧ increases. The main conclusion here is that
the overall value of ¹¸ does not change with the average span distance in a RWR.

5. CONCLUSIONS

A new type of wave re#ector, random wave re#ector (RWR), is introduced for the control
of vibration in an in"nite, multi-span, simple-support beam. To help illustrating the theory,
RWR is "rst applied to the control of plane sound waves in gas media. The wave re#ector in
this case consists of two wave-carrying media sandwiched in a random distribution of
thickness.Wave re#ection and scattering occur at all interfaces. Due to the de-correlation of



Figure 11. The e!ect of the number of supports, N, on the transmission loss for an incident wave from the far
left: (a) N"25; (b) N"50; (c) N"100; (d) N"150; (e) N"200; (f) N"250.
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all re#ected waves by the random choice of layer thickness, RWR can eliminate the
passbands associated with traditional reactive noise abatement methods. The level of
transmission loss is drastically improved, compared with other types of wave re#ectors.
The characteristics of RWR are studied in detail for the control of #exural vibrations in

an in"nite, elastic, multi-span, simple-support beam. The results are consistent with those



Figure 12. The e!ect of the average span distance for random wave re#ectors with span distance within the
range of [0)5 M̧ , 1)5 M̧ ] where M̧ is (a) 10 cm; (b) 15 cm; (c) 20 cm; (d) 25 cm; (e) 30 cm; (f ) 35 cm.
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found in the studies of the plane sound waves. In addition, the concept of the input power
#ow from an external force is introduced in the beam study. The results show that no
vibrational power can be tapped into a random beam system at all frequencies. The
problem of passbands can be completely resolved in a random system, and the performance
of RWR is much better than traditional devices. It is anticipated that the concept of
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RWR can be carried over to the control of vibration and noise in other more complex
structures.
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